metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander C. Filippou,^{a*} Gregor Schnakenburg^a and Athanassios I. Philippopoulos^b

^aInstitut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany, and ^bInstitute of Physical Chemistry, NCSR 'Demokritos', 15310 Ag. Paraskevi Attikis, Athens, Greece

Correspondence e-mail: filippou@chemie.hu-berlin.de

Key indicators

Single-crystal X-ray study T = 180 K Mean σ (C–C) = 0.008 Å Disorder in solvent or counterion R factor = 0.036 wR factor = 0.084 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Dichlorobis[ethane-1,2-diylbis-(diphenylphophine)- $\kappa^2 P$, P']tungsten(II) pentane hemisolvate

trans-[WCl₂(dppe)₂] [dppe is ethane-1,2-diylbis(diphenylphosphine), $C_{26}H_{24}P_2$] was formed as by-product in the reaction of trans-[W(dppe)₂(N₂)₂] with the *m*-terphenyltin(II) chloride, [Sn(Cl)(C₆H₃-2,6-Mes₂)]₂ (Mes is 2,4,6-trimethylphenyl), which yields mainly the stannylidyne complex trans-[Cl(dppe)₂W=Sn-C₆H₃-2,6-Mes₂]. The crystal structure of the pentane hemisolvate, trans-[WCl₂(dppe)₂]·0.5C₅H₁₂, has been determined. The geometric parameters of the title compound are compared with those of trans-[MoCl₂(dppe)₂]·0.5C₅H₁₂.

Comment

The synthesis of compounds containing a triple bond to silicon, germanium, tin or lead is one of the most challenging areas in main-group chemistry (Jutzi, 2000; Weidenbruch, 2003). Our recent studies in this field showed that thermal elimination of dinitrogen from the complexes trans- $[M(dppe)_2(N_2)_2]$ (M = Mo, W; dppe is Ph₂PCH₂CH₂PPh₂) in the presence of the germanium(II) halides Cp^*GeX ($Cp^* =$ C_5Me_5 ; X = Cl, Br, I) provides a convenient route to the germylidyne complexes *trans*-[$X(dppe)_2M \equiv Ge - (\eta^1 - Cp^*)$]. These compounds feature a triple bond to linear-coordinated germanium (Filippou, Philippopoulos et al., 2000; Filippou et al., 2002). The usefulness of the dinitrogen elimination method was recently demonstrated with the selective synthesis and full characterization of the stannylidyne complex trans- $[Cl(PMe_3)_4W \equiv Sn - C_6H_3 - 2, 6 - Mes_2]$, which is the first compound featuring a triple bond to linear-coordinated tin (Filippou, Portius et al., 2003).

The same methodology was recently applied to the dppe complex *trans*-[W(dppe)₂(N₂)₂], (1), to elucidate the influence of the ligand sphere on the selectivity of the reaction with the *m*-terphenyltin(II) chloride, $[Sn(Cl)(C_6H_3-2,6-Mes_2)]_2$, (2). This yielded mainly the stannylidyne complex *trans*- $[Cl(dppe)_2W \equiv Sn - C_6H_3-2,6-Mes_2]$, (3) (Filippou, Philippopoulos & Schnakenburg, 2003). A by-product was also formed in this reaction, which by elemental analysis and ¹H NMR

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Received 5 June 2003 Accepted 25 June 2003 Online 17 July 2003

6743 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.056$

 $\theta_{\rm max} = 25.5^{\circ}$ $h = -59 \rightarrow 59$

 $k = -13 \rightarrow 13$

 $l = -21 \rightarrow 21$

Figure 1

The molecular structure of (4α) , showing 50% probability displacement ellipsoids (DIAMOND; Brandenburg, 1999). All H atoms and the solvent molecule have been omitted for clarity.

spectroscopy was identified as trans-[WCl₂(dppe)₂], (4). Complex (4) was previously prepared by ligand exchange of trans-[WCl₂(PMePh₂)₄] with dppe; however, its molecular structure was not reported (Over et al., 1992). The title compound, (4α) , crystallizes in the same space group (C2/c) as the isostructural molybdenum complex trans-[MoCl₂(dp pe_{2}]·0.5C₅H₁₂ (Filippou, Portius *et al.*, 2000). The 16 valenceelectron complex reveals a distorted octahedral geometry with the trans-arranged chloro ligands forming at tungsten an angle of 173.65 (4) $^{\circ}$ (Table 1). Distortion results from the small bite of the dppe ligands $[P1-W-P2 = 79.37 (4)^{\circ}$ and P3-W- $P4 = 78.91 (4)^{\circ}$ and is also evidenced in the tilt of the axial chloro ligands with respect to the equatorial plane defined by the four P atoms. The angle between the $Cl1 \cdots Cl2$ axis and the P_4 plane [82.76 (3)°] is similar to that in *trans*- $[MoCl_2(dppe)_2] \cdot 0.5C_5H_{12}$ [82.38 (7)°]. The W–P and W–Cl distances in (4α) [(W-P)_{av} = 2.501 Å and (W-Cl)_{av} = 2.423 Å] are slightly shorter than the Mo-P and Mo-Cl distances in trans- $[MoCl_2(dppe)_2] \cdot 0.5C_5H_{12}$ [(Mo-P)_{av} = 2.529 Å and $(Mo-Cl)_{av} = 2.434$ Å, respectively; Filippou, Portius et al., 2000).

Experimental

A Schlenk tube was charged in a glove-box with complex (1) (1.635 g, 1.577 mmol) and a stoichiometric amount of (2) (0.737 g, 0.788 mmol). Toluene (100 ml) was added to the mixture and the orange suspension was gently refluxed for 10-15 min with a heating mantle. The color of the solution changed to dark red-brown. An IR

spectrum of the resulting reaction solution was recorded and revealed that the $v(N_2)$ absorption bands of (1) at 2010 and 1949 cm⁻¹ had disappeared. The warm solution was filtered from some black powder, the filtrate was evaporated to dryness, and the residue dried under high vacuum at 333 K for ca 2 h to afford the crude product, which was found by ¹H NMR spectroscopy to contain complex (3) contaminated with 4% of trans-[W(dppe)₂Cl₂], (4). Crude yield: 1.571 g (69%). Suitable yellow single crystals of (4α) were obtained upon diffusion of pentane into a toluene solution of the crude product at 298 K.

Crystal data

$[WCl_2(C_{26}H_{24}P_2)_2] \cdot 0.5C_5H_{12}$	$D_x = 1.514 \text{ Mg m}^{-3}$
$M_r = 1087.61$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 1723
$a = 49.230 (13) \text{\AA}$	reflections
b = 10.955 (2) Å	$\theta = 3.0-25.0^{\circ}$
c = 17.937 (4) Å	$\mu = 2.70 \text{ mm}^{-1}$
$\beta = 99.49 \ (3)^{\circ}$	T = 180 (2) K
$V = 9542 (4) \text{ Å}^3$	Plate, yellow
Z = 8	$0.24 \times 0.20 \times 0.08 \text{ mm}$

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: refined from ΔF (Walker & Stuart, 1983) $T_{\min} = 0.563, \ T_{\max} = 0.813$ 32 126 measured reflections 8465 independent reflections

Refinement

S

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.084$	$(\Delta/\sigma)_{\rm max} = 0.029$
S = 0.95	$\Delta \rho_{\rm max} = 1.39 \ {\rm e} \ {\rm \AA}^{-3}$
8465 reflections	$\Delta \rho_{\rm min} = -2.54 \text{ e } \text{\AA}^{-3}$
553 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.00009 (2)

Table 1

Selected geometric parameters (Å, °).

Cl1-W	2.4324 (11)	P2-W	2.4847 (14)
Cl2-W	2.4131 (11)	P3-W	2.4803 (13)
P1-W	2.5130 (13)	P4-W	2.5251 (15)
$Cl_2 = W = Cl_1$	173 65 (4)	P3-W-P1	174 87 (4)
Cl2-W-P3	95.21 (4)	P2-W-P1	79.37 (4)
Cl1-W-P3	87.74 (4)	Cl2-W-P4	91.47 (4)
Cl2-W-P2	81.97 (4)	Cl1-W-P4	83.58 (4)
Cl1-W-P2	103.27 (4)	P3-W-P4	78.91 (4)
P3-W-P2	97.09 (5)	P2-W-P4	172.02 (4)
Cl2-W-P1	88.01 (4)	P1-W-P4	105.05 (4)
Cl1-W-P1	89.45 (4)		. ,

All H atoms were placed in calculated positions, with C-H distances ranging from 0.95 to 0.99 Å, and included in the refinement in riding-motion approximation, with $U_{iso} = 1.2U_{eq}$ of the carrier atom. Geometric restraints were applied to the geometry of the pentane solvent molecule so that the C-C distances were approximately 1.54 Å and the C-C-C angles were 109.5° The highest peak and deepest hole in the difference map are located 0.99 and 0.91 Å, respectively, from the W atom..

Data collection: IPDS (Stoe & Cie, 1997); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND

metal-organic papers

(Brandenburg, 1999); software used to prepare material for publication: *SHELXL*97.

The authors cordially thank Dr B. Ziemer and Mrs P. Neubauer for technical assistance.

References

- Brandenburg, K. (1999). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
- Filippou, A. C., Philippopoulos, A. I., Portius, P. & Neumann, D. U. (2000). Angew. Chem. 112, 2881–2884; Angew. Chem. Int. Ed. Engl. 39, 2778–2781.
- Filippou, A. C., Philippopoulos, A. I. & Schnakenburg, G. (2003). *Organometallics*. Accepted.

- Filippou, A. C., Portius, P. & Philippopoulos, A. I. (2002). Organometallics, 21, 653–661.
- Filippou, A. C., Portius, P., Philippopoulos, A., Kociok-Köhn, G. & Ziemer, B. (2000). Acta Cryst. C56, e378–e379.
- Filippou, A. C., Portius, P., Philippopoulos, A. I. & Rohde, H. (2003). Angew. Chem. 115, 461–464; Angew. Chem. Int. Ed. Engl. 42, 445–447.
- Jutzi, P. (2000). Angew. Chem. 112, 3953–3957; Angew. Chem. Int. Ed. Engl. 39, 3793–3800, and references therein.
- Over, D. E., Critchlow, S. C. & Mayer, J. M. (1992). Inorg. Chem. 31, 4643–4648.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1997). IPDS. Version 2. 87. Stoe & Cie, Darmstadt, Germany.

- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Weidenbruch, M. (2003). Angew. Chem. 115, 2322–2324; Angew. Chem. Int. Ed. Engl. 42, 2222–2224, and references therein.