Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexander C. Filippou, ${ }^{\text {a }}{ }^{*}$ Gregor Schnakenburg ${ }^{\text {a }}$ and Athanassios I. Philippopoulos ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany, and ${ }^{\mathbf{b}}$ Institute of Physical Chemistry, NCSR 'Demokritos', 15310 Ag. Paraskevi Attikis, Athens, Greece

Correspondence e-mail:
filippou@chemie.hu-berlin.de

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in solvent or counterion
R factor $=0.036$
$w R$ factor $=0.084$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved
trans-Dichlorobis[ethane-1,2-diylbis-(diphenylphophine)- $\left.\kappa^{2} P, P^{\prime}\right]$ tungsten(II) pentane hemisolvate
trans- $\left[\mathrm{WCl}_{2}(\mathrm{dppe})_{2}\right]$ [dppe is ethane-1,2-diylbis(diphenylphosphine), $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}$] was formed as by-product in the reaction of trans-[W(dppe) $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$ with the m-terphenyltin(II) chloride, $\left[\mathrm{Sn}(\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}\right)\right]_{2}$ (Mes is 2,4,6-trimethylphenyl), which yields mainly the stannylidyne complex trans$\left[\mathrm{Cl}(\text { dppe })_{2} \mathrm{~W} \equiv \mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}\right]$. The crystal structure of the pentane hemisolvate, trans-[$\left.\mathrm{WCl}_{2}(\mathrm{dppe})_{2}\right] \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{12}$, has been determined. The geometric parameters of the title compound are compared with those of trans- $\left[\mathrm{MoCl}_{2}\right.$ (dppe $\left.)_{2}\right] \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{12}$.

Comment

The synthesis of compounds containing a triple bond to silicon, germanium, tin or lead is one of the most challenging areas in main-group chemistry (Jutzi, 2000; Weidenbruch, 2003). Our recent studies in this field showed that thermal elimination of dinitrogen from the complexes trans$\left[\mathrm{M}(\text { dppe })_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]\left(M=\mathrm{Mo}, \mathrm{W}\right.$; dppe is $\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ in the presence of the germanium(II) halides $\mathrm{Cp} * \mathrm{Ge} X\left(\mathrm{Cp}^{*}=\right.$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5} ; X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}\right)$ provides a convenient route to the germylidyne complexes trans-[$\left.X(\text { dppe })_{2} M \equiv \mathrm{Ge}-\left(\eta^{1}-\mathrm{Cp}^{*}\right)\right]$. These compounds feature a triple bond to linear-coordinated germanium (Filippou, Philippopoulos et al., 2000; Filippou et al., 2002). The usefulness of the dinitrogen elimination method was recently demonstrated with the selective synthesis and full characterization of the stannylidyne complex trans$\left[\mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{~W} \equiv \mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}\right]$, which is the first compound featuring a triple bond to linear-coordinated tin (Filippou, Portius et al., 2003).

(4α)
The same methodology was recently applied to the dppe complex trans-[W(dppe) $\left.)_{2}\left(\mathrm{~N}_{2}\right)_{2}\right]$, (1), to elucidate the influence of the ligand sphere on the selectivity of the reaction with the m-terphenyltin(II) chloride, $\left[\mathrm{Sn}(\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}\right)\right]_{2}$, (2). This yielded mainly the stannylidyne complex trans$\left[\mathrm{Cl}(\text { dppe })_{2} \mathrm{~W} \equiv \mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Mes}_{2}\right]$, (3) (Filippou, Philippopoulos \& Schnakenburg, 2003). A by-product was also formed in this reaction, which by elemental analysis and ${ }^{1} \mathrm{H}$ NMR

Received 5 June 2003
Accepted 25 June 2003
Online 17 July 2003

Figure 1
The molecular structure of (4α), showing 50% probability displacement ellipsoids (DIAMOND; Brandenburg, 1999). All H atoms and the solvent molecule have been omitted for clarity.
spectroscopy was identified as trans- $\left[\mathrm{WCl}_{2}(\mathrm{dppe})_{2}\right]$, (4). Complex (4) was previously prepared by ligand exchange of trans- $\left[\mathrm{WCl}_{2}\left(\mathrm{PMePh}_{2}\right)_{4}\right]$ with dppe; however, its molecular structure was not reported (Over et al., 1992). The title compound, (4α), crystallizes in the same space group $(C 2 / c)$ as the isostructural molybdenum complex trans- $\left[\mathrm{MoCl}_{2}\right.$ (dppe) $\left.)_{2}\right] \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{12}$ (Filippou, Portius et al., 2000). The 16 valenceelectron complex reveals a distorted octahedral geometry with the trans-arranged chloro ligands forming at tungsten an angle of 173.65 (4) ${ }^{\circ}$ (Table 1). Distortion results from the small bite of the dppe ligands $\left[\mathrm{P} 1-\mathrm{W}-\mathrm{P} 2=79.37(4)^{\circ}\right.$ and $\mathrm{P} 3-\mathrm{W}-$ $\left.\mathrm{P} 4=78.91(4)^{\circ}\right]$ and is also evidenced in the tilt of the axial chloro ligands with respect to the equatorial plane defined by the four P atoms. The angle between the $\mathrm{Cl} 1 \cdots \mathrm{Cl} 2$ axis and the P_{4} plane $\left[82.76(3)^{\circ}\right]$ is similar to that in trans$\left[\mathrm{MoCl}_{2}(\text { dppe })_{2}\right] \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{12}\left[82.38(7)^{\circ}\right]$. The $\mathrm{W}-\mathrm{P}$ and $\mathrm{W}-\mathrm{Cl}$ distances in $(4 \alpha)\left[(\mathrm{W}-\mathrm{P})_{\mathrm{av}}=2.501 \AA\right.$ and $(\mathrm{W}-\mathrm{Cl})_{\mathrm{av}}=$ $2.423 \AA$] are slightly shorter than the $\mathrm{Mo}-\mathrm{P}$ and $\mathrm{Mo}-\mathrm{Cl}$ distances in trans- $\left[\mathrm{MoCl}_{2}(\text { dppe })_{2}\right] \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{12} \quad\left[(\mathrm{Mo}-\mathrm{P})_{\mathrm{av}}=\right.$ $2.529 \AA$ and $(\mathrm{Mo}-\mathrm{Cl})_{\mathrm{av}}=2.434 \AA$, respectively; Filippou, Portius et al., 2000).

Experimental

A Schlenk tube was charged in a glove-box with complex (1) (1.635 g, 1.577 mmol) and a stoichiometric amount of (2) (0.737 g , $0.788 \mathrm{mmol})$. Toluene $(100 \mathrm{ml})$ was added to the mixture and the orange suspension was gently refluxed for $10-15 \mathrm{~min}$ with a heating mantle. The color of the solution changed to dark red-brown. An IR
spectrum of the resulting reaction solution was recorded and revealed that the $v\left(\mathrm{~N}_{2}\right)$ absorption bands of (1) at 2010 and $1949 \mathrm{~cm}^{-1} \mathrm{had}$ disappeared. The warm solution was filtered from some black powder, the filtrate was evaporated to dryness, and the residue dried under high vacuum at 333 K for $c a 2 \mathrm{~h}$ to afford the crude product, which was found by ${ }^{1} \mathrm{H}$ NMR spectroscopy to contain complex (3) contaminated with 4% of trans-[W(dppe) $\left.2_{2} \mathrm{Cl}_{2}\right]$, (4). Crude yield: $1.571 \mathrm{~g}(69 \%)$. Suitable yellow single crystals of (4α) were obtained upon diffusion of pentane into a toluene solution of the crude product at 298 K .

Crystal data

$\left[\mathrm{WCl}_{2}\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{12}$
$M_{r}=1087.61$
Monoclinic, $C 2 / c$
$a=49.230$ (13) A
$b=10.955$ (2) \AA
$c=17.937$ (4) \AA
$\beta=99.49(3)^{\circ}$
$V=9542(4) \AA^{3}$
$Z=8$
$D_{x}=1.514 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1723 reflections
$\theta=3.0-25.0^{\circ}$
$\mu=2.70 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Plate, yellow
$0.24 \times 0.20 \times 0.08 \mathrm{~mm}$
Data collection
Stoe IPDS diffractometer
φ scans
Absorption correction: refined from
ΔF (Walker \& Stuart, 1983)
$T_{\text {min }}=0.563, T_{\text {max }}=0.813$
32126 measured reflections
8465 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.084$
$S=0.95$
8465 reflections
553 parameters
H -atom parameters constrained

6743 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-59 \rightarrow 59$
$k=-13 \rightarrow 13$
$l=-21 \rightarrow 21$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cl} 1-\mathrm{W}$	$2.4324(11)$	$\mathrm{P} 2-\mathrm{W}$	$2.4847(14)$
$\mathrm{Cl} 2-\mathrm{W}$	$2.4131(11)$	$\mathrm{P} 3-\mathrm{W}$	$2.4803(13)$
$\mathrm{P} 1-\mathrm{W}$	$2.5130(13)$	$\mathrm{P} 4-\mathrm{W}$	$2.5251(15)$
$\mathrm{Cl} 2-\mathrm{W}-\mathrm{Cl} 1$	$173.65(4)$	$\mathrm{P} 3-\mathrm{W}-\mathrm{P} 1$	$174.87(4)$
$\mathrm{Cl} 2-\mathrm{W}-\mathrm{P} 3$	$95.21(4)$	$\mathrm{P} 2-\mathrm{W}-\mathrm{P} 1$	$79.37(4)$
$\mathrm{Cl} 1-\mathrm{W}-\mathrm{P} 3$	$87.74(4)$	$\mathrm{Cl} 2-\mathrm{W}-\mathrm{P} 4$	$91.47(4)$
$\mathrm{C} 2-\mathrm{W}-\mathrm{P} 2$	$81.97(4)$	$\mathrm{Cl} 1-\mathrm{W}-\mathrm{P} 4$	$83.58(4)$
$\mathrm{Cl} 1-\mathrm{W}-\mathrm{P} 2$	$103.27(4)$	$\mathrm{P} 3-\mathrm{W}-\mathrm{P} 4$	$78.91(4)$
$\mathrm{P} 3-\mathrm{W}-\mathrm{P} 2$	$97.09(5)$	$\mathrm{P} 2-\mathrm{W}-\mathrm{P} 4$	$172.02(4)$
$\mathrm{Cl} 2-\mathrm{W}-\mathrm{P} 1$	$88.01(4)$	$\mathrm{P} 1-\mathrm{W}-\mathrm{P} 4$	$105.05(4)$
$\mathrm{Cl} 1-\mathrm{W}-\mathrm{P} 1$	$89.45(4)$		

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $0.99 \AA$, and included in the refinement in riding-motion approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the carrier atom. Geometric restraints were applied to the geometry of the pentane solvent molecule so that the $\mathrm{C}-\mathrm{C}$ distances were approximately $1.54 \AA$ and the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles were 109.5° The highest peak and deepest hole in the difference map are located 0.99 and $0.91 \AA$, respectively, from the W atom..

Data collection: IPDS (Stoe \& Cie, 1997); cell refinement: IPDS; data reduction: $I P D S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND
(Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

The authors cordially thank Dr B. Ziemer and Mrs P. Neubauer for technical assistance.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Filippou, A. C., Philippopoulos, A. I., Portius, P. \& Neumann, D. U. (2000). Angew. Chem. 112, 2881-2884; Angew. Chem. Int. Ed. Engl. 39, 2778-2781.
Filippou, A. C., Philippopoulos, A. I. \& Schnakenburg, G. (2003). Organometallics. Accepted.

Filippou, A. C., Portius, P. \& Philippopoulos, A. I. (2002). Organometallics, 21, 653-661.
Filippou, A. C., Portius, P., Philippopoulos, A., Kociok-Köhn, G. \& Ziemer, B. (2000). Acta Cryst. C56, e378-e379.

Filippou, A. C., Portius, P., Philippopoulos, A. I. \& Rohde, H. (2003). Angew. Chem. 115, 461-464; Angew. Chem. Int. Ed. Engl. 42, 445-447.
Jutzi, P. (2000). Angew. Chem. 112, 3953-3957; Angew. Chem. Int. Ed. Engl. 39, 3793-3800, and references therein.
Over, D. E., Critchlow, S. C. \& Mayer, J. M. (1992). Inorg. Chem. 31, 46434648.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1997). IPDS. Version 2. 87. Stoe \& Cie, Darmstadt, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Weidenbruch, M. (2003). Angew. Chem. 115, 2322-2324; Angew. Chem. Int. Ed. Engl. 42, 2222-2224, and references therein.

